Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cross-sections, quotients, and representation rings of semisimple algebraic groups

Identifieur interne : 000314 ( Main/Exploration ); précédent : 000313; suivant : 000315

Cross-sections, quotients, and representation rings of semisimple algebraic groups

Auteurs : Vladimir L. Popov [Russie]

Source :

RBID : ISTEX:BA6AB5650FF78F318A038CC3221967A9466C1CE0

Abstract

Abstract: Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny $$ \tau :\hat{G} \to G $$ is bijective; this answers Grothendieck’s question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg’s theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck’s questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T ⇢ G/T where T is a maximal torus of G and W the Weyl group.

Url:
DOI: 10.1007/s00031-011-9137-6


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cross-sections, quotients, and representation rings of semisimple algebraic groups</title>
<author>
<name sortKey="Popov, Vladimir L" sort="Popov, Vladimir L" uniqKey="Popov V" first="Vladimir L." last="Popov">Vladimir L. Popov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BA6AB5650FF78F318A038CC3221967A9466C1CE0</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1007/s00031-011-9137-6</idno>
<idno type="url">https://api.istex.fr/document/BA6AB5650FF78F318A038CC3221967A9466C1CE0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002642</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002642</idno>
<idno type="wicri:Area/Istex/Curation">002642</idno>
<idno type="wicri:Area/Istex/Checkpoint">000275</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000275</idno>
<idno type="wicri:doubleKey">1083-4362:2011:Popov V:cross:sections:quotients</idno>
<idno type="wicri:Area/Main/Merge">000314</idno>
<idno type="wicri:Area/Main/Curation">000314</idno>
<idno type="wicri:Area/Main/Exploration">000314</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Cross-sections, quotients, and representation rings of semisimple algebraic groups</title>
<author>
<name sortKey="Popov, Vladimir L" sort="Popov, Vladimir L" uniqKey="Popov V" first="Vladimir L." last="Popov">Vladimir L. Popov</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, 119991, Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Russie</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Transformation Groups</title>
<title level="j" type="abbrev">Transformation Groups</title>
<idno type="ISSN">1083-4362</idno>
<idno type="eISSN">1531-586X</idno>
<imprint>
<publisher>SP Birkhäuser Verlag Boston</publisher>
<pubPlace>Boston</pubPlace>
<date type="published" when="2011-09-01">2011-09-01</date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="827">827</biblScope>
<biblScope unit="page" to="856">856</biblScope>
</imprint>
<idno type="ISSN">1083-4362</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1083-4362</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny $$ \tau :\hat{G} \to G $$ is bijective; this answers Grothendieck’s question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg’s theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck’s questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T ⇢ G/T where T is a maximal torus of G and W the Weyl group.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Russie</li>
</country>
<region>
<li>District fédéral central</li>
</region>
<settlement>
<li>Moscou</li>
</settlement>
</list>
<tree>
<country name="Russie">
<region name="District fédéral central">
<name sortKey="Popov, Vladimir L" sort="Popov, Vladimir L" uniqKey="Popov V" first="Vladimir L." last="Popov">Vladimir L. Popov</name>
</region>
<name sortKey="Popov, Vladimir L" sort="Popov, Vladimir L" uniqKey="Popov V" first="Vladimir L." last="Popov">Vladimir L. Popov</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000314 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000314 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:BA6AB5650FF78F318A038CC3221967A9466C1CE0
   |texte=   Cross-sections, quotients, and representation rings of semisimple algebraic groups
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022